コウリション・コンセプト;東北大学にとってのメリット

高田昌樹 総長特別補佐 (一財)光科学イノベーションセンター 理事長

新たな大型研究基盤の整備の仕組み:官民地域パートナーシップ

建設費概算総額: 約360 億円程度 (整備用地の確保・造成の経費を含む)

分担: 最大約190~200 億円

国の主体

量研機構 理事長 平野俊夫

枢要部の建設・運営

■ 入射器・蓄積リング ビームライン ~3本

民間企業

■コウリション活動への参画

加入金: 一口5000万円(運開より10年間有効:建設資金協力) インセンティブ:200時間/年の利用権

> 課題申請免除、毎月申請、成果占有利用 学術研究者とのマッチング支援

他施設を活用した利用準備支援

(現在 20社。学術との先行マッチングを開始)

加入企業:約75社(分析会社7社/2019年11月時点)

(内訳) 自動車・自動車関連機器製造・タイヤメーカー、産業用機械・ 電子機器・電子部品製造、化学・非金属材料、金属・エネルギー、 化粧品·製薬·医療福祉関連製品製造

分担: 最大約160~170 億円 宮城県、仙台市、寄付金等: 約100億円

(代表機関)

光科学イノベー ションセンター (PhoSIC) 理事長 高田昌樹

- 基本建屋、研究交流施設 ビームライン ~7本
- コウリション活動の推進

東北経済連合会 会長 海輪 誠

コウリション活動の支援

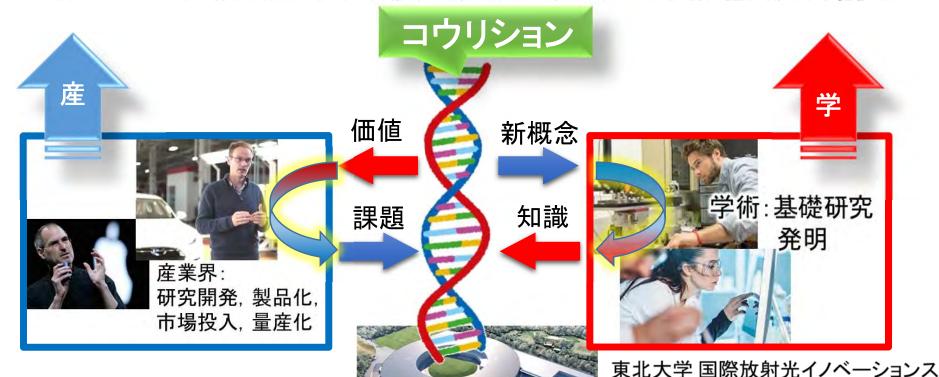
宮城県 知事 村井嘉浩

- ■土地造成
- 誘致企業への支援

仙台市 市長郡和子

- 地域支援
- 都市ビジョン 「光イノベーション都市・仙台」
- トライアルユース事業

東北大学 総長 大野英男


- ■土地提供
- 学術研究(国内外連携の推進)
- 産学連携の強化 (コウリション活動支援)

官民地域パートナーシップ 産と学を紡ぎ

イノベーションをスパイラルアップするDNAを宮城が創る

紡ぐのは人

イノベーションのコーヒー・ブ レイク・コーナー

業種や役職を越えた貴重な人間 関係が構築され、情報が交換される。

叹世代放射光

交換する情報

マート研究センター等

- ・AIとかビッグデータに載らない希少 な情報
- ・放射光施設の利用で密着した関係からしか手に入らない情報

PhoSIC(光科学イノベーションセンター)の体制

学術と産業界がオールジャパン体制で、次世代放射光を整備

東経連 会長 海輪 誠

東北大学 総長 大野英男

IHI 取締役 村上晃一

産総研 理事長 中鉢良治

三菱重工 CTO 名山理介

経団連 専務理事 根本勝則

物材機構 理事長 橋本和仁

日立製作所 基礎研究センタ長 山田真治

理事会

理事長 高田昌樹

専務理事 相澤敏也

東経連 副会長 向田吉広

東北大学 理事 矢島敬雅

東芝 執行役専務 齊藤史郎

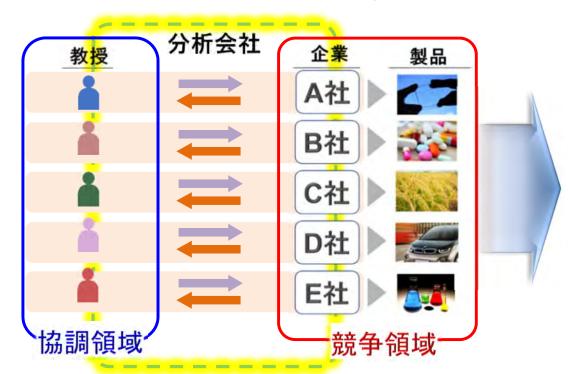
住友ゴム工業 技監 中瀬古広三郎

みやぎ工業会 会長 畑中 得實

監事

日本政策投資銀行 佐野 成信

七十七銀行 茂田井健太郎



コウリション・コンセプト イノベーションを加速する利用スキーム

学術が、建設資金を出資した企業と、1対1でユニットを組み製品開発競争の出口イメージを共有し、放射光施設を利活用するCoalition (有志連合)を形成する。

次世代放射光施設利用に適用する活用コンセプト

グローバルマスターブランドの創出 競争力の源泉を育成

企業の研究開発および エンジニアリングの加速

新技術、新製品の創出

10年の契約で、中長期研究支援企業における短期主義を解消

コウリションコンセプトに整合したBLのイメージ

多様なサイエンスの要望に、先端計測技術で応え 非専門家の研究を支援する。

ES

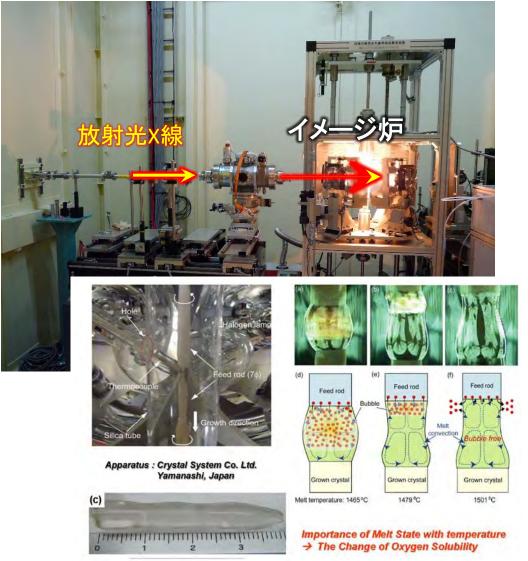
- □ 安定で、切れ目ない利用を可能にする。
- □ 独立専用型のハッチ構成で、プラグ&プレイを可能にする
- □ ロボット活用により、IoT、AI時代のハイスループット化を実現する。

自動化計測ステーション

ロボット化によるハイスループット化メールイン測定,リモート計測

利用 Utilization

先端計測ステーション


企業の製造装置、特殊計測ベンチ 「イノベーションベンチ」の "プラグ&プレイ"により 独自の先端計測を実現

> 活用 Exploitation

SPring-8事例 イノベーションベンチの基となったアイデア

大型イメージ炉での ガラス焼成プロセス (東工大 細野GL)

カーボンファイバー 焼成プロセス FSBL中間報告(SPring-8)

次世代放射光

◆東北大学の所有ではありません。

(所有した場合、運営費等の後年度負担を求められます)

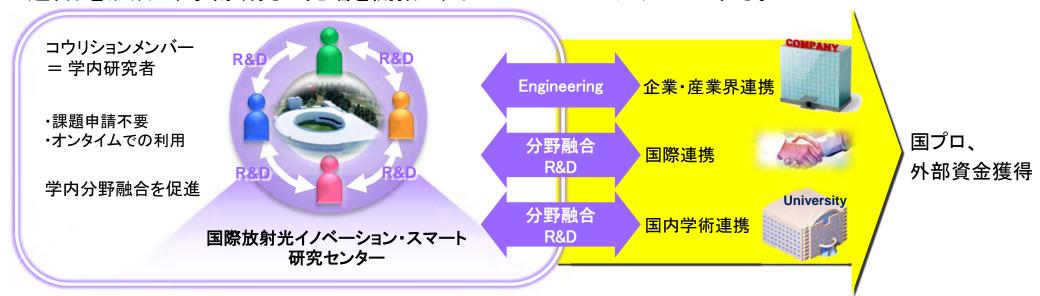
◆東北大学の土地はPhoSICに貸与されています。

コウリションメンバー

◆次世代放射光を所有するPhoSICと契約するパートナー

(施設の利用・運営に関するもので後年度負担は求められません)

- ◆PhoSICを介して、施設の建設・運営にコミットできます。
- ◆対象は産業界に限定されていません。


SPring-8と次世代放射光の比較

SPring-8		次世代放射光		
ビームライン(BL) 種別	共用BL:共用法に基づく共用 専用BL:理研、設置者による専用 稼働中(2019年4月)BL 57本 (共用BL 26本、専用BL 31本)	初期設置BL:10本 うち、コウリション BL 7本 (最大設置可能BL数:26本)		
利用申請	共用法に基づく課題申請・審査必要	共用法に基づく課題申請・審査必要(予定)。 コウリションメンバー(コウリションBL): 課題申請・審査 不要		
申請時期と 施設利用時間 割当ての仕組み	半年毎に申請。 採択された課題の施設利用時間 を、BL担当者が調整し割り当てる。	毎月申請可能。 加入金(5千万円/ロ)の口数に応じた優先順位 [※] に基づき、施設利用時間(200時間/年、10年)を割 り当てる。 ※ 5口(1位)、2口(2位)、1口(3位)		
成果	原則公開	占 有		
施設利用料	成果公開:免除 成果占有:6万円/時	3.5万円/時(案) コウリションメンバーで協議の上決定		
利用時間	ユーザーにより異なる	200時間×□数/年		
産学マッチング	支援なし	支援あり		
分析会社支援	支援なし	支援あり(7社が参画 2019年現在)		
専用BL整備・運営	整備:自己資金 維持費:5000万円/年を施設へ	検討中 (SPring-8の制度を参照の可能性) 9		

東北大学がコウリションメンバーになるメリット

■ 大学におけるコウリション・コンセプト

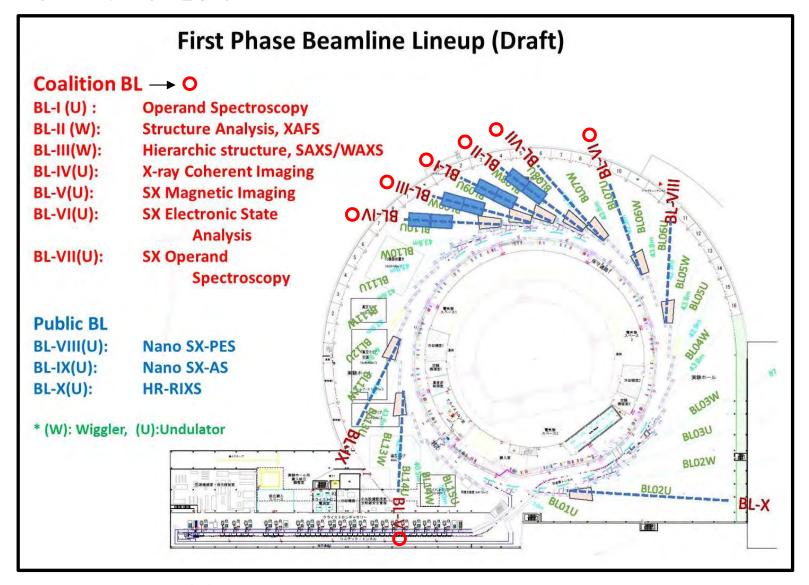
大学の研究者・学生が分野や、放射光の専門家・非専門家の壁を超えて横断的にコウリション(有志連合)を形成し、学術研究の先端を開拓し、イノベーションにチャレンジする。

■ 加入メリット

- ・萌芽(若手)研究・ハイリスク研究への挑戦的利用の機会を 拡大できる
- ・大学が一体となって分野融合・新学術領域を創成すること が可能になる
- 分野を横断した外部資金プロジェクトの推進を確実に遂行できる

(参考)コウリションメンバーの会員種別と利用条件

会員種別	加入条件	マシンタイム 割当優先順位	利用申込 期限
プラチナ会員	5 ⁻	1 st	7 _{日前まで}
ゴールド会員	2 □	2 nd	30日前まで
一般会員	1 🗆	3 rd	30日前まで

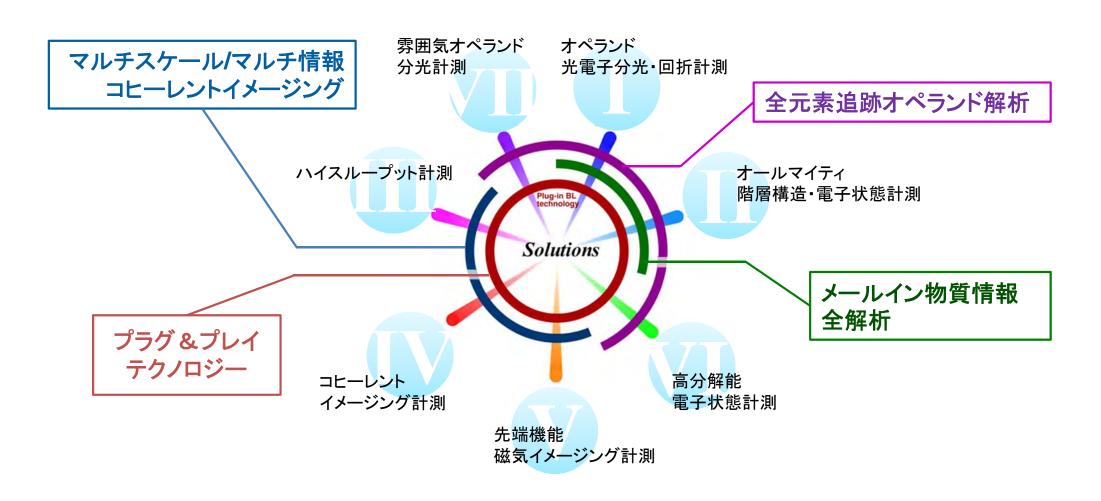

■今後の学内の予定

学内意向調査を実施(2月末〆切)し、学内調整のうえ加入口数を決定。

補足資料

ビームライン配置(案)

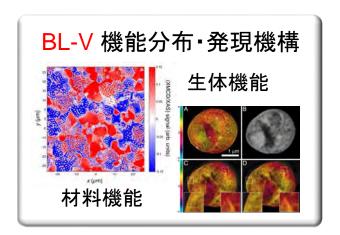
■「横断的利用」「実験内容の秘匿性の担保と安全性の確保の両立」を 踏まえ、配置を検討

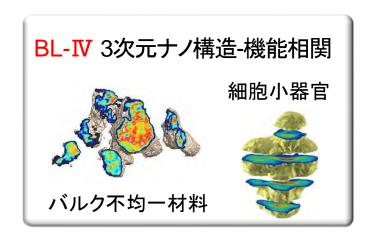


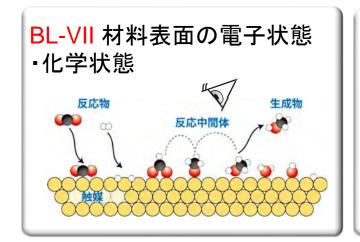
- ESハッチのデザイン(必要なワークスペースや秘匿性、安全性の両立から大きさと形と配置を決める)
- インターロックシステム

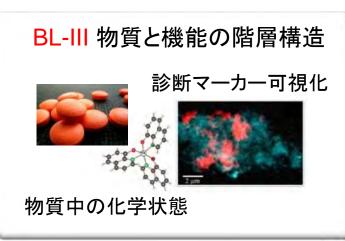
次世代放射光による先端計測ソリューション

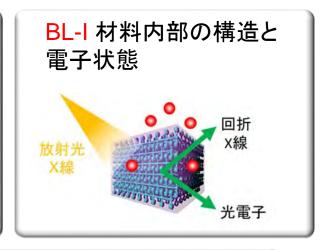
コンセプト

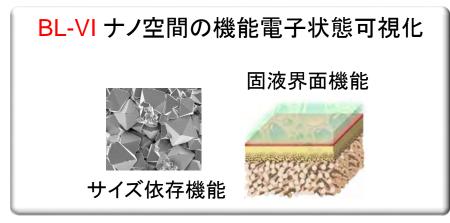

複数の放射光施設をまたいでデータ収集することが、 PhoSICビームラインの横断的利用によって可能となる。 最小限の時間で必要なデータが揃う。

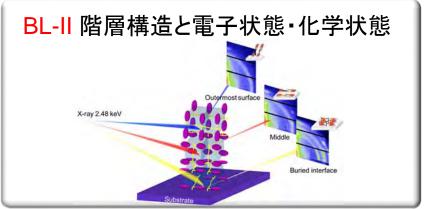


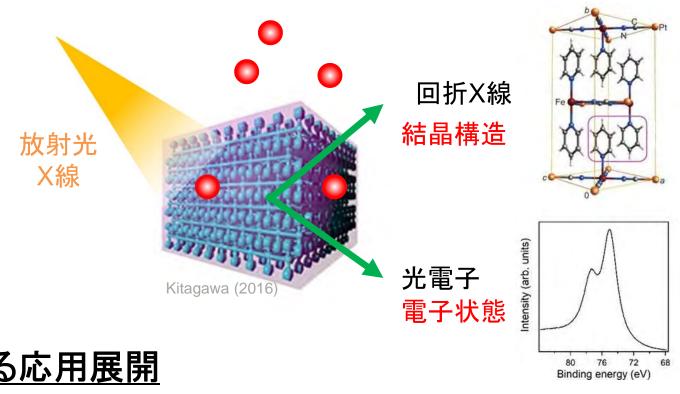

方 針

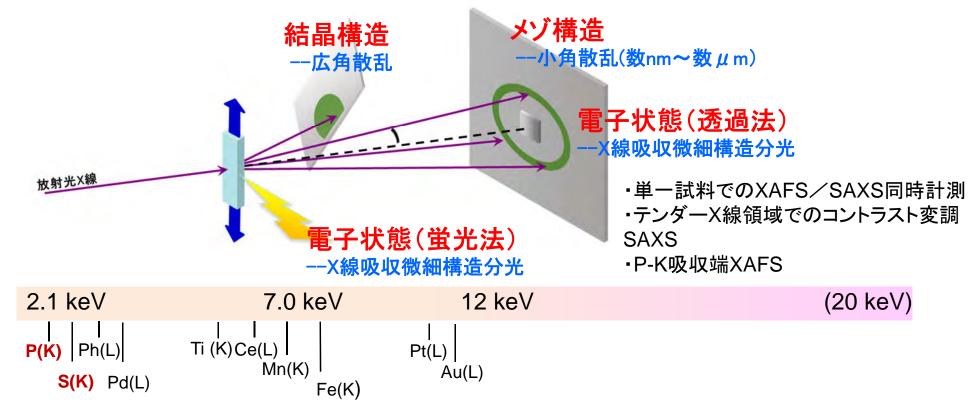

PhoSICビームラインの横断利用を最適化し総合的なデータ収集をユーザーに提供する。


パートナービームラインにおけるサイエンス例

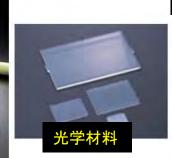


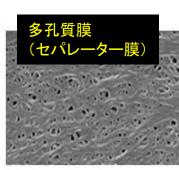


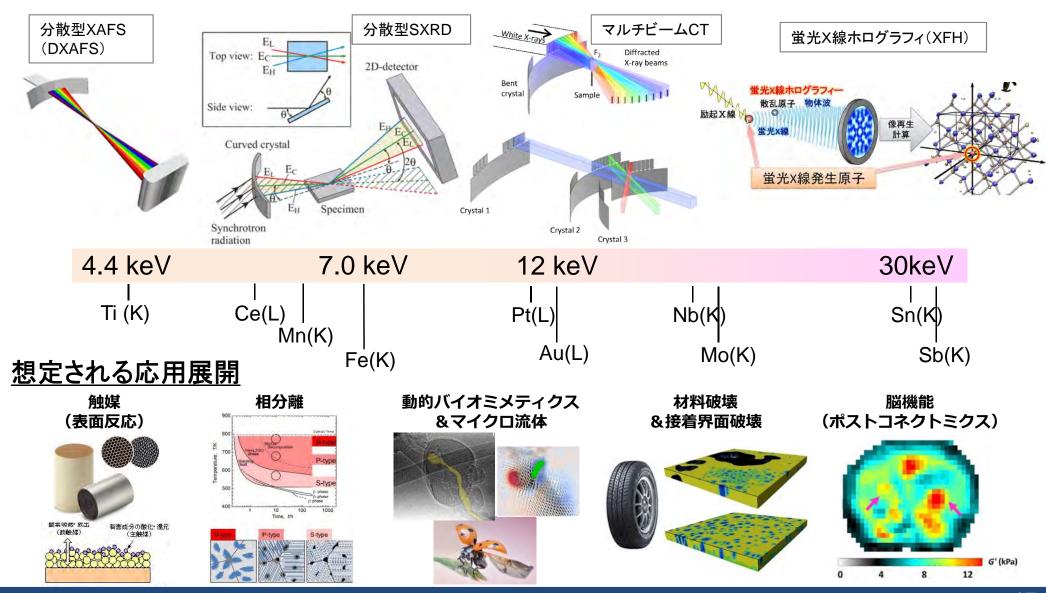


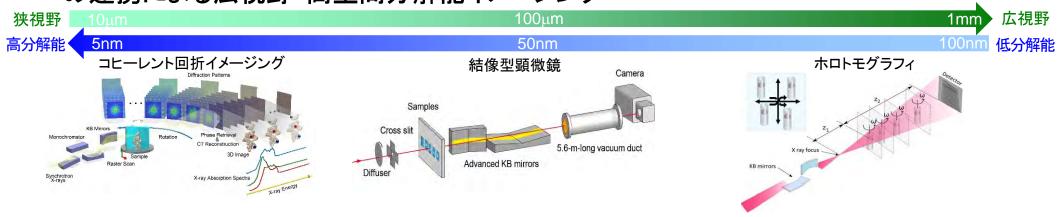

オペランドX線回折・硬X線光電子分光により 反応・動作条件下の材料内部の結晶構造と電子状態の両方を決定

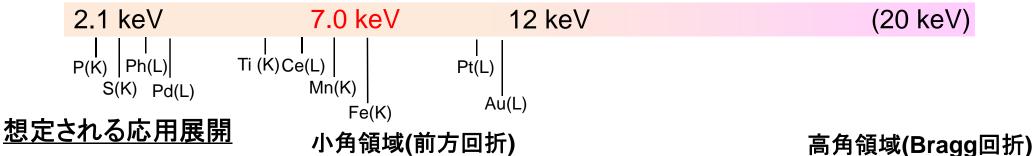
想定される応用展開


X線吸収微細構造分光、X線小角/広角散乱を軸に、テンダーX線領域(2.1keV~5.0keV)から硬X線領域5.0keV~12keV(20keV)までシームレスに利用可能なオールマイティなBL


想定される応用展開

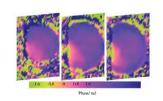


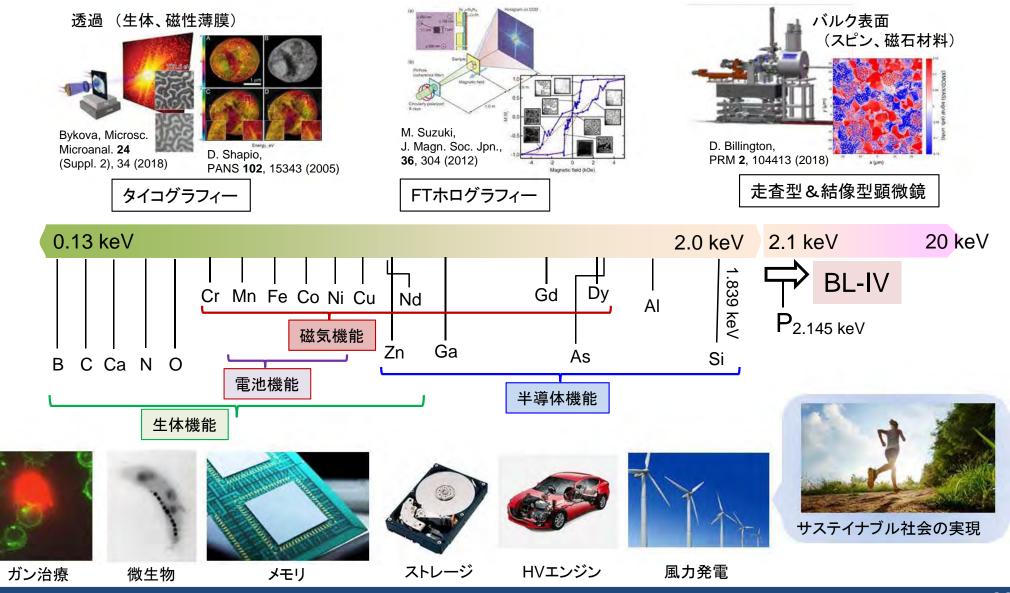


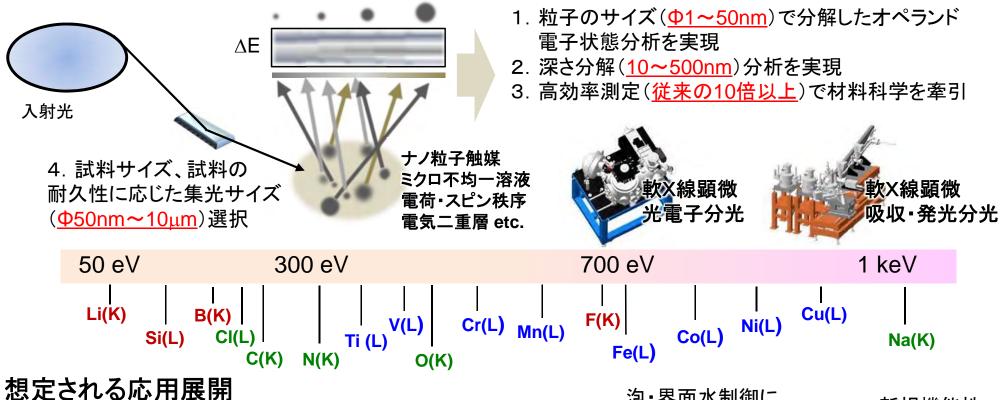

- 1. 主に10~30 keVでの大面積・高時間分解能・高空間分解能X線イメージング・トモグラフィ
- 2. 20~30 keV領域の走査型蛍光X線イメージング&蛍光X線ホログラフィ(ノーマルモード)

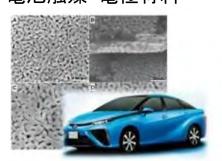
1. コヒーレント回折イメージング(タイコグラフィを含む)、結像型顕微鏡、ホロトモグラフィの連携による広視野・高空間分解能イメージング

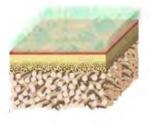
2. 元素吸収端・偏光を使った化学・磁気状態イメージング(テンダーX線領域(2.1keV~5.0keV)から硬X線領域(5.0keV~12keV(20keV))までをシームレスに利用可能)






ナノ材料・単結晶薄膜 (歪み場)

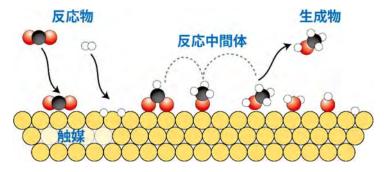

軟X線コヒーレント回折イメージングと走査型&結像型顕微鏡による10nm分解能イメージングに、偏光制御による物質機能の抽出を組み合わせた<u>先端機能イメージング</u>を実現


軟X線光電子分光、吸収分光、発光分光の高分解能化、高効率化を両立し、 オペランド計測で液相・固相の反応・機能の主役となる電子状態可視化を実現

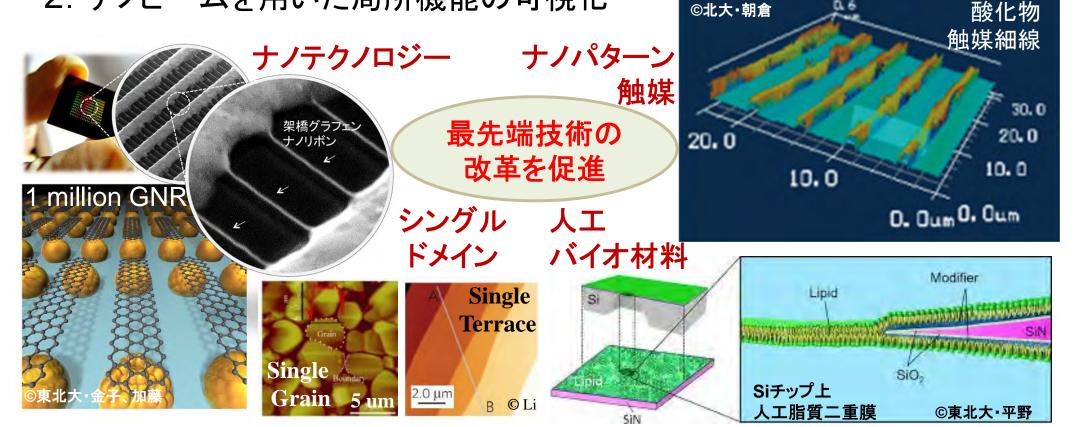
電池触媒•電極材料

水処理膜

食品保存•機能化


泡·界面水制御による材料機能発現

新規機能性 高分子材料



1. 軟X線雰囲気光電子・吸収分光による反応・動作条件下での 触媒・電池・バイオ材料表面のオペランド化学状態解析

- ✓ 軽元素(C, N, O, etc.)に高感度な軟X線で機 能材料単体だけでなく反応分子も追跡
- ✓ 高輝度ナノビームにより軟X線で1気圧での 測定を実現

2. ナノビームを用いた局所機能の可視化

